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Abstract

The present investigation deals with the nonlinear analysis of the dynamic buckling response and global stability
aspects of two 3-DOF spring-mass, initially imperfect dissipative simplified structural models under step loading,
simulating elastic shell panels of revolution and in particular a spherical cap and a conical panel. It is found that
snapping, which is the main characteristic of the actual continuous structures, is successfully captured by the proposed
simulations, which following a straightforward nonlinear approach are found to exhibit dynamic snap-through
buckling, associated with a point attractor response in the large, implying global stability. Furthermore, the presence of
physically not accepted complementary equilibrium configurations does not affect the long term response of the auto-
nomous systems dealt with, but only complicates the motion and elongates the time before the final steady state. Fi-
nally, the criterion of zero total potential energy yields excellent lower bounds of the exact dynamic buckling loads, very
important for structural design purposes. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Structural models; Dynamic snap-through; Point attractors; Global stability; Shells of revolution

1. Introduction

The strongly nonlinear and imperfection-sensitive behavior of shell structures under various types of
dynamic loading or excitation, leading to catastrophic failure in some circumstances, has been the subject of
numerous investigations, especially over the last 40 years. More specifically, studies dealing with the dy-
namic response of such structures have revealed a variety of interesting phenomena, depending on the
shape and geometry of the shell considered, its properties and control parameters involved, as well as the
type of the loading. Among these, one should refer to interaction of competing buckling modes and al-
ternation of the membrane stress distribution as imperfections grow (Galladine, 1995), cusp-catastrophe
and snap-through buckling (Ye et al., 1995), dynamic snap-out instability (Akkas, 1978) and chaotic
snapping behavior (Greer and Palazotto, 1995), “strange” phenomena, periodic and/or random-like
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chaotic oscillations (Karaesmen et al., 1992), dynamic instability in a secondary displacement state-para-
metric resonance (Chien and Palazotto, 1992), etc.

Although the governing differential equations of motion are nonlinear and coupled in nature, the rapid
development of analytical techniques and numerical methods combined with the advent of powerful
computers, have enabled scientists to cast new light upon the global response and the corresponding
buckling characteristics of shells. In as much as, for the dynamic buckling analysis of the aforementioned
type of structures, it has been shown and evidently reported (Akkas, 1976; Simitses, 1990) that the most
severe case of dynamic loading is the step load of infinite duration, while for shell panels of revolution
(axishells, Libai and Simmonds, 1998) subjected to a concentrated step load, it is widely believed that the
generalized displacement associated with the degree of freedom of the concentrated load dominates the
system’s behavior. Furthermore, in conjunction with the last two pertinent remarks, engineering practice
often overcomes the mathematical and other difficulties arising, when dealing directly with the nonlinear
dynamics of actual continuous structures, simulating the latter via simple models with a few degrees of
freedom. This is achieved with the comprehensive use of various matching criteria, provided that these
embrace the salient and prominent features of the structures modeled (Kounadis, 1994). Namely, such
simple models by no means posses the fidelity of corresponding sophisticated Finite Element Method
(FEM) ones but both experimental and theoretical findings point out that the majority of the nonlinear
characteristics of continuous structures may be simulated quite adequately.

In addition to the above, shells of revolution, thought of mainly as conical plane cut-off sections — except
perhaps deep conical caps, contain a rather convenient and easy to describe geometry, and consequently
their nonlinear dynamic buckling response may be successfully simulated qualitatively through the use of
simple models. The comprehensive modeling of the nonlinear response of these structures, acted upon by a
transverse, constant directional, conservative step point loading of infinite duration, with significant
membrane activity and elastic nature, i.e. elastic shell panels, is the subject of the present study. Based on

Fig. 1. Geometry and sign convention of a (a) spherical cap and (b) conical shell panel.
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previous similar studies, dealing with cylindrical shell panels (Chien and Palazotto, 1992; Greer and Pal-
azotto, 1995; Kounadis and Sophianopoulos, 1996), this investigation focuses on the analysis of two 3-
DOF spring-mass dissipative simplified structural models, both initially imperfect, reported recently as
simulations of the nonlinear behavior of spherical and conical shell panels (Michaltsos et al., 1996, 1998).

After establishing and manipulating the strongly nonlinear Lagrange equations of motion, employing a
straightforward dynamic buckling approach, it is found that the shell panels dealt with, which under
statically applied load exhibit as outlined in the citations given earlier, a limit point instability, buckle
dynamically through a saddle or its vicinity of the postbuckling physical unstable equilibrium path. After
limited in time and amplitude oscillations about this fixed point, the motion of the systems escapes and is
finally attracted by remote stable, also physical, equilibria exhibiting a point attractor response largely,
which implies global dynamic stability. The pertinent zero total potential energy criterion and the dynamic
buckling analysis developed by Kounadis (1993, 1994, 1996), fully and readily applicable for the models
under consideration, yield excellent lower bound buckling estimates, of great importance for engineering
design purposes; thus, a further investigation of the motion channel geometry with more refined approxi-
mations as in Kounadis and Sophianopoulos (1996) are no longer necessary. Finally, although there seems
to a certain level an intermediate effect of complementary physically not accepted equilibrium configura-
tions, these do not affect the long term response, but only complicate and delay the motion before it settles
on its remote attractor. Thus, contrary to previous findings (Chien and Palazotto, 1992) and although the
proposed models could capture possible coupling effects, parametric resonance does not occur, neither
quasi-periodic nor chaotic motions are encountered, since all these are ruled out due to the whole au-
tonomous formulation, based on a well-behaved potential function.

2. Description of the models

According to the geometry and sign-displacement convention of a spherical cap and a conical shell panel
depicted in Fig. 1(a, and b, respectively), the corresponding three and four spring, one-mass, 3-DOF models
shown in Fig. 2(a) and (b) are adopted, acted upon by a vertical step loading of infinite duration on the
center of mass m. Both the models illustrated in Fig. 2 represent the perfect configurations for reasons only
of clarity. The multiple symmetries of the sphere allow the Spherical Cap Model to consist of three identical
linearly elastic springs, while on the other hand the existence of only one symmetry plane in the cone leads

P(t)=Pf(t) 1)
1

»v

Fig. 2. Proposed 3-DOF models of a (a) spherical cap and (b) conical shell panel, under step loading of infinite duration.
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to the use of two pairs of similarly identical springs, for the corresponding Conical Shell Panel Model. For
the sake of simplicity the abbreviations SCM and CSPM will be used in the subsequent analysis. Since the
correct and realistic simulation of everyday practice real structures must include initial imperfections and
damping, both SCM and CSPM contain springs with stiffnesses k; (i=1-3 or 4) with corresponding
dashpots having Rayleigh type damping coefficients ¢; (i=1-3 or 4) and are characterized by an initial
unstressed trivial configuration, given by imperfection displacement components ug, vy and wy. Therefore,
the degrees of freedom utilized are strictly translational, i.e. no rotation and thus no bending action is
present. In this manner, the models dealt with may as well capture the most significant feature inherent in
the buckling response of relatively deep shell structures, for which membrane activity is pronounced, for the
nonlinear dynamic analysis to follow. For a more detailed description of the proposed models one may
refer to the relevant citations (Michaltsos et al., 1996, 1998).

3. Geometric considerations

Let us consider the perfect models of Fig. 2; if under the action of the point load, the new position of the
origin is now defined by displacement components u, v, w, one can write the new lengths of the stressed
springs, for each model, as follows:

3.1. Spherical cap model

12
Ip = {u2—|— (r— 1))2 + (h —w)z} ,

3 N 1/2
_ 3 LTI R 2o p
lIpy = _ 3 u_ —&—[2—&—0} + (h—w) , h* +7r =4, (lac)
3 N 12
3 r 2 2
€D3— T+M +|:§+U:| +(h—W)
3.2. Conical shell panel model
1/2
o = { (6t =)’ + (s =0 + (el — W)}, i= 14, (2a-d)
where
0 = xt —L—Htane(l—cosqb) sin6
= = os0 ’
h .
xly =xly = “eosd (H — h) tan0(1 — cos¢) sin0, (3)

vb = —yl, = HtanOsin¢g, yl; = —yly = (H — h) tanOsin ¢,
2y =zl = HsinO(1 — cos¢), zl; =zl = (H — h)sinf(1 — cos¢),

while the corresponding lengths ¢y, at the initial unstressed imperfect configuration are readily found, upon
substitution of u, v, w with uq, vy, wy in the formulas given above.
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Hence, the translational displacements o; of the springs are equal to

4. Mathematical analysis

Using g1 = u, g» = v and g3 = w as generalized coordinates and assuming that both systems are initially
(t = 0) at rest, the Lagrange equations governing the motion under the action of the step point loading P()
of infinite duration are given by the well-known relation

d{@K} 0K oV OoF

at\ 35 | "oq g Tag 0 =123 (3)

K is the positive definite function of the kinetic energy and F, the also positive definite dissipation function
of Rayleigh, with the following analytical expressions:

K =im(i + v* +W?), (6)
1< ) . .
F = 5;“’5” j =3 for SPM, ;=4 for CPSM, (7)

while V' = U + Q is the total potential energy, where U is the elastic strain energy and @ the potential
energy of the external (conservative) load P. Clearly,

1 2 .
U:E;k,@, j=3or4, (8)

Q=—P(w—wy). 9)
For the preceding loading type, Eq. (5) is associated with the following set of initial conditions:

9:(0) = g0 (g0 = U0, q20 = Vo, g30 = W),

g:(0)=0 (i=1,2,3). (10)

With the aid of relations (4) and (6)—(9), setting x| = g1, X2 = q», X3 = ¢3, X4 = §1, X5 = ¢2, X6 = §3, the
system of Eq. (5) and the initial conditions can be written in a matrix—vector form as follows:

x=f(x;K,C,M;2), x€E’ K, CMcE Jl€E,

X(x=0)=xp, Xx(t=0)=0 (11)

with the loading A being the main control parameter.

This defines a highly nonlinear initial-value problem and can be treated as the state equation of a sixth
order autonomous nonlinear dynamical system with vector field x : R® — R®, K being the stiffness pa-
rameter vector, M, the concentrated mass vector, and C, the dissipation coefficients vector. It is in fact a
damped Hamiltonian system, and thus the only steady-state behavior is the equilibrium (fixed) point xg,
not affected by damping and given by

f(xg) =0 (12)
from which Eq. (11) yields
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oV )
a(x,-;/l) =0, (i=123) (13)
constituting a necessary and sufficient criterion for static equilibrium.
After introduction of the nondimensional parameters,

qi:@, q,.():@ (i=1,2,3), }_z:ﬁ, f:f(l_zz+f2_1),
/ /! 14 /
k P (14)
c=c/Vkm, 1=1/—t, Ai=-— for SCM,
m ket
and
_ qi — qio 7 i
=7 - 7 i = 7 - 1a2a3 )
q h7 th ]’l i | (l )
¢; 0 L
Xﬂi:%a )7&‘:%7 Zgi:% (1217273)7 (15)
_ ki P
¢ =c/\km, t=1/—t, A=-— for CPSM,
m kll’l

the vector field in Eq. (11) transforms into its proper dimensionless form which is given for each model in
Appendix A. This can be solved only numerically, as pointed out in a later discussion. A very efficient
procedure is the easily programmable Runge-Kutta—Verner seventh order modified scheme, since with the
appropriate choice of a small step /4, the error is O(/’) and thus the method produces reliable information
even for large time solutions.

According to previous widely accepted analyses by Kounadis (1993, 1994), dynamic buckling occurs via
a saddle or its neighborhood, satisfying condition V7 < 0. This particular fixed point may belong either to
physical postbuckling or to complementary unstable, in fact non-stable, equilibrium paths; if the conditions
for the initiation of dynamic buckling are fulfilled, as described in detail in the literature given above, the
system’s motion escapes through the vicinity of the saddle and either an unbounded or a bounded point
attractor response is finally exhibited. The exact value of the dynamic buckling load Zpp, when damping is
accounted for, can be evaluated only numerically, while for typical limit point systems, like the ones dealt
with herein, a very good lower bound Ap can be obtained using the zero total potential energy criterion, i.e.
by simultaneously solving Eq. (13) with V7 = 0; if Ap denotes the exact load for the corresponding non-
dissipative system, then the following inequality is valid:

;:D < Jp < App < As < ;Lc, (16)

where /s is the limit point load and /c the bifurcational load of the perfect system. Furthermore, the need
for a more accurate approximation of App arises only if Ap is significantly smaller than Ag, a phenomenon
scarce for systems with more than two degrees of freedom. Additionally, if the geometry of the considered
model is suitable, as for shells of revolution, one can determine App following a straightforward fully
nonlinear dynamic analysis, as it will be illustrated below. On any event, the very good energy consider-
ations and new dynamic buckling estimates given in the recent work by Kounadis and Sophianopoulos
(1996) must be quoted, which deals with a cylindrical shell panel.

5. Numerical results and discussion

In order to offer a more comprehensive field of understanding and explaining the dynamic buckling
phenomenon, it is essential to present at first the results of the nonlinear static stability analysis.
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5.1. Nonlinear static buckling — spherical cap model

For this model, two characteristic cases are adopted, a “short” one with 4 = 0.30 and a “taller” one
(h = 0.60), both being initially imperfect (g, = 0.01, i = 1-3). Solving the nonlinear equilibrium Eq. (13)
with respect to g,,q, and 4, by step increasing the value of the displacement in the direction of the external
load g5, equilibrium paths are established, as plots of the loading A vs g;. These are clearly depicted in Figs.
3 and 4, from which it is perceivable and more or less expected that for both cases considered the model
exhibits a limit point instability, occurring for 7 = 0.30 at a load As about ten times less than the corre-
sponding one for 4 = 0.60. Furthermore, paths (g,,4) and (g,,4) are symmetrical with respect to the
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Fig. 3. Physical equilibrium paths (g;, /;i = 1-3) of a SCM with & = 0.30.
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Fig. 4. Physical equilibrium paths (g;, ;i = 1-3) of a SCM with z = 0.60.

horizontal axis, while paths (g5, 4) of the governing degree of freedom, are fully symmetrical over point
(h,0) — ideal snap-through type; at this unstable fixed point all springs lie unstressed without loading on the
base of the cap, and both g, and g, experience a local minimum. Their maximum, however, is observed just
after limit point S and just before its “mirror” point §’. Thus the “‘umbrella” reverse geometry snap
through is identified, which is one of the main features of actual spherical caps. It should be also noted, that
there also exist complementary equilibrium configurations, not presented in Figs. 3 and 4, since their role
on the global dynamic response is minimal, as it will be shown in the nonlinear dynamic buckling section.

5.2. Nonlinear static buckling — conical shell panel model

Aiming to cover the most common cases of conical shell panels and to gain the ability of comparison
with existing previous analyses, three initially imperfect models are been manipulated, with springs of equal
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stiffness and damping (g, = 0.01, i =1,2,3, k; =1, ¢ = 0.05, i = 1-4), implying isotropic elastic char-

acteristics, without any serious loss of generality. Their corresponding projections on the vertical plane

through the cone’s generator is shown in Fig. 5, from which one can see that case 1 (0 = 0.10°, ¢ = 90°,

H = 5000 m, 2= 50 m) corresponds to a CSPM, very close geometrically to a cylindrical one. Case 2

@=1° ¢ =060°, H=58 m, h=1.00 m) represents a relatively deep conical shell panel, while case 3

(0 =40°, ¢ = 60°, H=280 m, » =20 m) is of an average geometry, found excessively in everyday practice.
Following the same procedure as the one outlined for the SCM, natural equilibrium paths

(g;, %, i =1-3) are found and represented schematically within Figs. 6-8. Similarly to SCM, complemen-

tary (physically not accepted) equilibria do exist, but again they do not affect the long term response, as it

will be specified below.
Comparing the nonlinear static response of the cases mentioned above, the following are observed:

¢ Evidently, a limit point instability is exhibited throughout, a common characteristic of conical shells.

e For cases 2 and 3, simulating pure conical shells of smooth geometry, all respective equilibrium paths are
similar to each other, with the longer shell panel model (case 3) having a smaller load-bearing capacity
(to about 50%).

e On the other hand, due to its distinct length, deformation g, behaves in a different manner for the
cylinder-like CSPM of case 1, and consequently the governing DOF is apparently the vertical one g5,
as detected in the literature mentioned earlier. Furthermore, the results for a CSPM with ¢ = 90° and
0 — 0 (almost perfect cylinder) are in excellent agreement with the ones presented in the literature for
cylindrical shell panels (Kounadis and Sophianopoulos, 1996).
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Fig. 5. Three characteristic CSP cases (projections on a vertical plane through the cone’s generator).
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Fig. 6. Physical equilibrium paths (g;, 4; i = 1-3) of CSPM case 1.

5.3. Nonlinear dynamic buckling

5.3.1. General observations
Since an exact solution for the strongly nonlinear ordinary differential equations governing the motion
of both systems considered is not known, one may either resort to approximate solution techniques or
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Fig. 7. Physical equilibrium paths (g;,2; i = 1-3) of CSPM case 2.

perform a direct numerical integration. In doing the former, neither standard perturbation methods and
variations (Nayfeh, 1973; Nayfeh and Mook, 1979) nor harmonic balancing (Adadan and Huseyin, 1984)
are applicable, because the first requires the existence of a basic exact nonlinear solution, while the second

produces valuable information when the state variables are of a polynomial form, which are by no means
the case for the models under study.
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Fig. 8. Physical equilibrium paths (g;, 4; i = 1-3) of CSPM case 3.

Moreover, the most governing nonlinear terms in the equations of motion of SCM and CSPM are not a
priori known, and trying to reduce the systems’ dimensionality via normal forms, leading to unavoidable
series expansions and truncating, would rather complicate than simplify the whole analysis. The presence of
damping results to energy-balance inequalities and thus the benefit of a first integral of motion without the
need of cumbersome linearization, serving as a Lyapunov function is lost (Wiggins, 1990).

Hence, a straightforward fully nonlinear dynamic analysis, by carefully choosing an appropriate nu-
merical scheme, remains the only efficient and reliable tool for the study of motion itself, as well as of the
global stability of steady-states, and will be hereafter employed.
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5.3.2. Spherical cap model

The shape of the physical primary and secondary equilibrium paths for both cases (4 = 0.30,060) in
Figs. 3 and 4 offer a beforehand indication of the type of dynamic buckling expected. Indeed, it is of a snap-
through type, since as depicted in the corresponding phase plane portraits of Figs. 9 and 10, dynamic
buckling takes place in the vicinity of a saddle point DD on the unstable postbuckling path with negative
total potential, and after bounded oscillations of small amplitude and duration about this fixed point, the
motion escapes remaining always bounded, to be finally captured by remote stable natural equilibria, acting
as point attractors and implying global dynamic stability. The value of the dynamic buckling load App can
be determined numerically with any desired accuracy, based on the mere observation that an escaped
motion is initiated if and only if its amplitude for the degree of freedom of the external loading g;(t)
overrides the barrier of the symmetry plane, i.e. if and only if g;(t) > 4. In this manner, the values of /pp
(for ¢ = 0.06) are found equal to 0.01147963 (7 = 0.30) and 0.11397747 (h = 0.60), while the zero total
potential criterion yields the lower bound dynamic estimate Ap (note that the saddle point D for V7 = 0 is
shown in Figs. 3 and 4). The latter values are equal to 0.011337777 and 0.1108575, respectively, revealing
a discrepancy — compared to App — of 1.24% and 2.56%, practically negligible, a finding quite useful for
engineering design purposes. Hence, no necessity for further approximations of Jpp based on geometric
aspects of the motion channel geometry arises, while the significant amplitude of the remaining two less-
dominant DOF g, (t) and g,(t), before the motion after considerable time finally settles on its attractor, can
be conveniently interpreted as the effect of complementary equilibria, which do not act as attractors, as
reported for other multi-DOF systems.

5.3.3. Conical shell panel model

Following a similar procedure as with SCM it is found that the dynamic buckling mechanism is again of
a snap-through type, associated with a point attractor response in the large, as illustrated in the phase plane
portraits of Figs. 11-13 for cases 1-3, respectively. For the dominant degree of freedom the motion after
escaping close to the saddle DD is instantly captured by its attractor; on the other hand the oscillations
after dynamic buckling of g,(t) and g,(7) are quite complicated, implying a more significant intermediate
effect of complementary equilibria, equivalent to a non-smooth energy hypersurface with multiple relative
maxima and minima.

Additionally, the zero total potential criterion yields lower bound dynamic estimates of very good ac-
curacy, since the maximum difference calculated between Ap and /Zpp is 1.84%; hence, the relevant con-
clusions drawn in the SCM dynamic buckling analysis are valid also for the CSPM.

For both models considered, the qualitative findings concerning dynamic instability via snap through are
found closely matching the ones obtained recently (Ye and Zhiming, 1997) for parametrically excited thin
spherical and conical shells.

6. Conclusions

The most important conclusions of the present study are as follows:

(a) The dynamic buckling response of elastic shell panels of revolution with significant membrane action
and especially spherical and conical ones, under step loading, can be comprehensively presented through
efficient simple one-mass 3-DOF imperfect dissipative models.

(b) The dynamic snap-through buckling mechanism, being the main feature of actual shell panels, is cap-
tured by the proposed simulations, while the zero total potential criterion yields excellent approxima-
tions of the exact dynamic buckling load, of major importance for structural design purposes.
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e point attractor 0.0099692747
/

dynamic buckling

Fig. 9. Phase plane portraits [g,(t),,(t); i = 1-3] of a SCM with & = 0.30, ¢ = 0.06 at A = App = 0.01147963.

(c) The presence of complementary equilibrium configurations only complicates the oscillations and de-
lays the inevitable effect of the remote stable point attractor, thus being not significant for the systems
global response.

(d) Finally, contrary to previous findings, the motion of the systems after dynamic buckling is not of a
chaotic nature.
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Fig. 10. Phase plane portraits [7,(t),g,(t); i = 1-3] of a SCM with & = 0.60, ¢ = 0.06 at A = App = 0.11387747.

Appendix A. Differential equations of motion, static equilibrium equations and total potential energy in
dimensionless form

A.1. Spherical cap model

ox 512)1 le)z 512)3
[ s (r)(gn) (sn)(E )
— X5C§ — ZZ - é_2 + 52
DI D2 D3
=V3 V3
_X6z _%—’_(rimxl) (r ;;:XI) (h—x3)=0 (A1)



930 D.S. Sophianopoulos | International Journal of Solids and Structures 38 (2001) 915-934
a =6=q==0.05 (b) i o “ o buckin
( ) 0.0003 WP°E¢O%1:7Q§7 A= Ap= 0.0“‘0889876723 0.03 :10'“: 8(0‘5%%905 A= :‘D;Z-ms-gg:?sn; q:):ar:li).gl?ﬁdﬁnél
: aop = 0.00948331 N ] - e
00002 \ dynamic buckling 0.02 . = ;
0.0001 ‘% = A\ 001 ,/ Z SN
SR N do—1- (14414 7~ NN
e R (@ )
T : = -
RTINS 77\/‘ e qZ< T)_o ot \\k\\\ - = 4‘;’ / 7
6=0.10°,¢=90° ’ N =
~0.0002 - . H=5000m, =50 N \2\ /ﬁ// Z
St N~ Gh0=C=00=0-01 — /
kik=hi=1.00 6=0.10° 9=00° == !
-0.0003 ] { phase plane potrtait ::qu;::m i x ) | =,= ].~ ; ,_'_r_lphase pllane potrtt
o5 o0 o0 o0 ky=k=k=1.00 -001 000 001 002 003 004 005
q1(T qz( T)
(C) om0 = 0.05 point attractor
0.08 13 = A= 000889876723 —l el —
006 ! b ]
’dynamic b.ucklingl )X//—\ \
oot i % SN
002 \ s N
’ T~ YavaIaya AL
0.001L y [ CLE N
O f NLeRN NN
Z [azp = 0119629 —
0.02- g = OTE2 ) i
004 68=0.10°,9=00° —
H=S000m h=S0r S= /
o =
-0 J [
P 05 o0 o5 0 05 0% 03B 040 04
a{7)

Fig. 11. Phase plane portraits [§;(t),g,(t); i = 1-3] of CSPM case 1 with ¢, = 0.05, i = 1-4 at 4 = ipp = 0.00889876723.
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A.2. Conical shell panel model
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with

Ip; = Ip;/h from expressions (2) and B; = by /h (i = 1,2,3),

_ Ve 1y 2 (A.15)
Vr = W = E;(EDi - ﬂz) - /1()@ —x30).
In all the relations given above
X, =q, Xo=4qy and xj=gq, i=123< j=4/56. (A.16)
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